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Abstract

This paper examines the regulation of distribution system operators

(DSOs) focused the Czech electricity market. It presents an international

benchmarking study based on data of 15 regional DSOs including two Czech

operators. The study examines the application of yardstick methods using

data envelopment analysis (DEA) and stochastic frontier analysis (SFA).

Based on our results, we find that the cost efficiency of each of the Czech

DSOs is different, which indicates a suitability of introduction of individual

efficiency factors in the regulatory process.
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1 Introduction

The electricity distribution sector in the Czech Republic is dominated by

three regional distribution system operators (DSOs). Their natural monopo-

listic structure creates a need for regulation. Czech Energy Regulation Office

(ERU) is applying incentive based revenue cap regulation, which is designed

to motivate the incumbents to improve efficiency of their operation. The

problem is that the firms are treated equally, regardless of the structure of

the network that they control. The regulator employs only the general X

factors that implicitly assume the firms to be similar. The equal treatment

of DSOs is, however, very simplistic and if there are differences in cost effi-

ciency among the operators, the less efficient operators are not incentivised

to converge to the more cost efficient operators.

Introduction of the individual efficiency factors is problematic due to

only three firms dominating the market. The comprehensive analysis of the

incumbents conducted to reveal their true cost efficiency is beyond the capa-

bilities of the regulator and given the size of the companies even impossible

to complete. ERU sought to introduce the individual efficiency factors, but

abandoned the idea because of the shortage of data (ERU, 2009). The compa-

nies can be compared with their competitors or with comparable companies;

however, as Pollitt (2005) notes, in reality it is difficult to find strictly compa-
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rable firms. Another option is to model an efficient frontier of the comparable

firms that serves as a yardstick (Kuosmanen et al., 2013). Given the Czech

market structure, the option might be benchmarking of gas and electricity

DSOs; however, there are significant differences between the sectors (storage,

impact of the crisis, network specifics, etc.) and these may prove to be very

difficult to control for. We believe that the suitable option, how to compute

the efficiency of the incumbents, is to conduct a benchmarking analysis using

the international dataset.

Our paper is based on articles published in the Energy Policy journal. We

draw inspiration from works of Michael Pollitt and his colleagues. Interna-

tional benchmarking study was conducted by Jamasb and Pollitt (2003) who

benchmarked 63 regional electricity distribution and transmission companies

using the DEA, SFA and COLS methods. The authors stressed the potential

of international benchmarking for regulators but they also mentioned the

obstacles. We see the problematic part in inclusion of both DSOs and TSOs

in the analysis because their operation is different. Haney and Pollitt (2009)

conducted a survey of 40 energy regulators and found out that benchmarking

techniques are widely used for the regulation of gas and electricity utilities.

They further sought the determinants of best practice regulation (Haney

and Pollitt, 2011) on the same sample of countries. The authors examined

the benchmarking practice of TSOs; they mentioned that the benchmarking

methods and frontier analyses substitute the complicated engineering models

of regulated methods and they also stressed that the TSOs are more difficult

to benchmark as they are more idiosyncratic and need to be benchmarked

internationally (Haney and Pollitt, 2013, p. 277). This also confirms our
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assumption that DSOs and TSOs should be benchmarked separately. Ku-

osmanen et al. (2013) focused on the best practice benchmarking of DSOs.

They compared DEA, SFA and StoNED (for more details, refer to Kuosma-

nen et al., 2013) methods. StoNED methods are employed by Finnish regula-

tor and combine advantages of DEA and SFA, however, they demand bigger

datasets. Both Michael Pollitt and Timo Kuosmanen worked for national

regulatory offices in England and Finland respectively, and they influenced

the development of benchmarking for regulation in both countries.

As was mentioned above, a similar benchmarking study in the Czech

Republic was not conducted yet. As far as we know, similar analysis was

not conducted for other European countries that we examine either (namely

Slovakia, Poland and Serbia). We follow papers that examined benchmark-

ing methods in particular states. Farsi et al. (2005 and 2006) examined

the panel of 59 Swiss distribution utilities using SFA estimated by gener-

alised least squares, maximum likelihood and random effects models. Their

analysis was facilitated by large dataset (around 380 observations) that sig-

nificantly exceeds other studies. Agrell and Bogetoft (2011) supervised the

final report on the use of benchmarking methods for the regulation of DSOs

prepared for the Belgian regulator. They examined both gas and electricity

DSOs and recommended DEA for the regulation. The general recommended

variables were TOTEX (input), and number of connections, lines length and

transformers (outputs).

The benchmarking studies are not only used in theoretical literature, but

are widely used in the regulatory practice. According to Bogetoft and Otto

(2011), there were nine European regulators that used benchmarking for the
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regulation of electricity DSOs. According to Schweinsberg et al. (2011),

regulators in 12 out of 27 EU members used methods of cost benchmarking

in energy regulation.

Our study complements the already conducted studies and brings analysis

of states that were outside of the field of interest of the researchers. We are,

unfortunately, not allowed to disclose the computed efficiency scores for for-

eign operators due to the contractual obligations; however, the international

dataset brings the efficiency comparison among the companies and allows us

to determine the efficiency scores for the Czech DSOs.

In the following sections, the yardstick methods used to measure the per-

formance of DSOs and collected data are described. We adopt the DEA and

SFA methods for benchmarking while taking into account the scope of the

data available. The methods widely applied to the regulation of electricity

markets are described and compared in the second section without formali-

sation. The thorough formalisation of all methods and yardstick techniques

(TFP, DEA, COLS, MOLS and SFA) would significantly exceed the recom-

mended scope of the paper. This section encompasses description of the

DEA and SFA methods and of the dataset. The purpose of the following

sections is to outline the methodology and data used for a computation of

the efficiency scores of DSOs.

2 Methodology

DSOs are traditionally subject to specific regulation. The regulators have

been changing the rate of return schemes to incentive regulation since 1990s.

The incentive regulation is usually complemented by yardstick methods to
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better fit the regulated decision making units (hereafter DMUs) and to mit-

igate the information asymmetry. The terms DMU and firm are taken as

interchangeable even though the firm may not be inappropriate for example

in the case of benchmarking the public service companies, but in context of

our study they are both relevant.

The most widely used techniques are the DEA methods combined with

the stochastic frontier methods or methods based on the OLS regressions. In

our study, the DEA models are preferred because of the limited scope of data

while both the constant and variable return to scale DEA models are applied.

In the literature, the DEA models are often complemented by a second stage

OLS regression of efficiency parameters to control for other environmental

characteristics that are typical of DSOs in the electricity sector. We checked

the CRS DEA results and regressed coefficients on population density and

the estimates confirmed the results of VRS DEA. Due to the size of dataset,

we decided to apply both the CRS and VRS DEA specifications without

second stage. The DEA models are supplemented with SFA, but we are

aware of the limitations stemming from the size of the dataset.

2.1 Techniques

2.1.1 Data envelopment analysis

DEA is a non-parametric method that use piecewise linear programming to

calculate the efficient surface (or frontier) over the data (Coelli et al., 2005).

The efficient DMUs lying on the frontier envelop the less efficient firms. The

efficiency of particular DMUs (firms) is calculated relative to the frontier on

a (0, 1〉 scale. The efficient DMU is scored one and the number indicates a
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point on the frontier.

The DEA models can be both input and output oriented. The input-

orientated DEA calculates how much the input quantities can be reduced

without changing the output values. The output-orientated programmes

how much the outputs can be expanded keeping the input quantities un-

changed. The input-orientated DEA is generally appropriate for benchmark-

ing of DSOs (e.g. Frontier Economics, 2012; Jamasb and Pollitt, 2003);

moreover, the demand for distribution services is a derived demand, the in-

cumbents cannot influence it and it has to be met because of the regulation

(Jamasb and Pollitt, 2003). The models can be specified for constant or

variable returns to scale (CRS, VRS respectively).

Firstly, we define the CRS input-based model. We will follow notation

made by Coelli et al. (2005). Assume the dataset of N firms containing data

on K inputs and M outputs. They are represented by column vectors xi

and yi respectively. The input matrix X (K ×N) and the output matrix Y

(M ×N) represent the data for all firms.

For each firm, we would like to obtain the efficiency score that is the

maximum ratio of weighted outputs to weighted inputs for each DMU, such

as u′yi/v
′xi where u is a vector of output weights (M × 1) and v is a vector

of input weights (K×1). The efficiency score in a multiple input and output

scenario is obtained by solving of the linear programming problem
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max
u,v

(
u′yi
v′xi

) (1)

s.t.
u′yj
v′xj

≤ 1, j = 1, . . . , N

u, v ≥ 0.

The linear programming is solved for each DMU while the efficiency score

must be less or equal to one. The problem of above mentioned programming

problem is that it has infinite number of solutions (Coelli et al., 2005). If

(ũ, ṽ) are the solutions, then for a ε R, (aũ, aṽ) are solutions as well; therefore,

it is necessary to modify the model and impose a constraint of weighted inputs

to equal one. Formally,

max
u,v

(
u′yi
v′xi

) (2)

s.t. v′xi = 1,

u′yj
v′xj

≤ 1, j = 1, . . . , N

u, v ≥ 0.

Coelli et al. (2005) suggest equivalent form of the (2) linear programming

problem that is also more convenient for our analysis. Using duality, it can

be rewritten as a linear programming problem
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min
θ,λ

θ (3)

s.t. − yi + Y λ ≥ 1

θxi −Xλ ≥ 0

λ ≥ 0,

where θ is a scalar (equal to efficient score) and λ represents a N × 1

vector of constants. The problem (3) satisfies the assumption of efficiency

score to be between zero and one while the DMU with θ = 1 is technically

efficient. To obtain the efficient score for each DMU, the linear programming

problem must be sold N times. In the model (3), the DMU i is compared

to linear combination of other firms in the sample. It is obvious from the

second condition that the output vector xi is minimised while still remaining

in the feasible set of inputs that is bounded by the piece-wise linear isoquant

determined by the firms included in the sample. The input vector xi is radi-

ally contracted on the isoquant (frontier) to the point (Xλ, Y λ). This point

is a linear combination of the observed data points and given the constraints

in the model (3), it is inside the feasible set.

The radial contraction of the input vector is invariant in units so the

efficiency score is not influenced by change of measurement units. Since we

assume only one cost input variable in our model, there can be identified

missing outputs after the proportional reduction in input. These exist only

for inefficient firms and represent only the leftover portion of inefficiencies

after the radial contraction and the slacks are necessary to move to firm to
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the efficient frontier (Ozcan, 2008).

The problem of CRS DEA is that implicitly assumes that the firms are op-

erating on the optimal scale. This assumption is violated in case of imperfect

competition, regulations and other factors that restrict the firms to operate

at optimal scale (Coelli et al., 2005). To get VRS DEA, the model (3) is

modified by adding a convexity constraint
∑
λ = 1. If the CRS specification

is applied to DMUs that are not operating on efficient scale, the technical

efficiency is influenced by scale efficiencies. VRS DEA calculates technical

efficiency less the scale efficiencies and the firms are compared against other

DMUs with similar size. The VRS DEA model is defined

min
θ,λ

θ (4)

s.t. − yi + Y λ ≥ 1

θxi −Xλ ≥ 0

N1′λ = 1

λ ≥ 0,

where the N1 is a N × 1 vector of ones.

To find out the nature of the returns to scale, Coelli et al. (2005) recom-

mends non-increasing returns to scale specification (NIRS) where the restric-

tion N1′λ = 1 from (4) is replaced by restriction N1′λ ≤ 1. If the efficiency

scores from VRS and NIRS differ, the increasing returns to scale exist for the

particular firm. The NIRS restriction ensures that the firm is benchmarked

against firms of similar size and not substantially larger.
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Using VRS DEA, the overall effect can be decomposed to technical ef-

ficiency and scale efficiency. Important advantage of DEA is that is does

not suffer from problems with multicollinearity, because it is based on linear

programming (Andor and Hesse, 2011; Went, 2007). Jensen (2005) showed

that multicollinearity has little impact even on the results of SFA.

There are several rules of setting the minimal amount of DMUs for DEA

to have good discriminatory power. The general rule of thumb is that the

minimum number of DMUs should be at least twice the sum of inputs and

outputs. Some authors recommend more prudent approaches - twice the

multiple of inputs and outputs, three times the number of inputs and outputs

and so forth (for more details, refer to Sarkis, 2007; or Cullinane and Wang,

2006).

2.1.2 Stochastic frontier analysis

In the previous section, we considered the non-parametric DEA to obtain

efficiency measures. In this section, parametric estimation using SFA is con-

sidered. The development of the SFA models is soundly described in the

literature (e.g. Coelli et al., 2005; Greene, 2007). The main advantage of

SFA compared to DEA is that it allows for statistical and functional form

testing and separates noise and inefficiency. SFA requires specification of

production (or cost) function requiring assumptions about production tech-

nologies of DMUs.

As well as the ordinary least squares methods, SFA requires specification

of the production function and shares many properties with regression tech-

niques, but it uses more sophisticated estimation of the production frontier.
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We will consider costs as dependent variable in model similarly to DEA. The

treatment of outputs and inputs will be therefore analogous.

DEA attributes the difference between the particular DMU and efficient

firm to inefficiency. The estimation of deterministic production frontier could

be conducted by methods based on OLS, but any deviation from determinis-

tic efficient frontier is again assigned to inefficiency; however, the deviations

might not be under control of the management and could be caused for ex-

ample by measurement error or other source of statistical noise (Coelli et al.,

2005). The stochastic frontier production function model was developed to

overcome these problems.

There are several different expressions of the technology of the indus-

try. The Cobb-Douglas and translog specifications are most frequently used

in empirical applications. The Cobb-Douglas form is more restrictive in as-

sumptions but usually preferred over translog specification for benchmarking

of DSOs with smaller samples. SFA is estimated using the maximum likeli-

hood estimation techniques.

We start with a model for cross-sectional data and follow notational sys-

tem from Coelli et al. (2005). The stochastic production function model was

simultaneously proposed by Aigner et al. (1977) and Meeusen and van Den

Broeck (1977) in form

ln qi = x′iβ + vi − ui, (5)

where qi is dependent variable of i-th firm (input in case of cost frontier);

xi is a K×1 vector of logarithms of explanatory variables (outputs in case of

cost frontier); β is a vector of unknown parameters; vi is a symmetric random
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error accounting for statistical noise; and ui is non-negative random variable

associated with inefficiency. The statistical noise is caused by measurement

error, omission of relevant variables and it can arise from approximation of

errors related to the functional form of the production (or cost) function.

The model is bounded from above by stochastic variable exp(x′iβ + vi) that

gives the model its name.

Let us further assume production function. The SFA frontier can be

illustrated graphically. Taking the Cobb-Douglas stochastic frontier (5) of the

production function with single dependent (output) and single explanatory

(input) variables, we have

ln qi = β0 + β1 lnxi + vi − ui. (6)

If we rearrange the equation (6), we get

qi = exp(β0 + β1 lnxi)× exp(vi)× exp(−ui), (7)

where exp(β0 + β1 lnxi) is deterministic component; exp(vi) represents

noise; and exp(−ui) is inefficiency term. Assume the deterministic frontier

to reflect the decreasing returns to scale. Further assume two firms, firm

A and firm B. Firm A produces output qA using input xA, firm B uses xB

to produce qB. If the both firms are effective, i.e. there are no inefficiency

effects (uA = 0 ∧ uB = 0), the production functions are

q∗A ≡ exp(β0 + β1 lnxA + vA) ∧ q∗B ≡ exp(β0 + β1 lnxB + vB). (8)
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Further assume the noise effect for firm A to be positive (vA > 0) and

for firm B to be negative (vB < 0), and deterministic frontier qi = exp(β0 +

β1 lnxi).

The position of the firm with respect to the deterministic frontier depends

on the magnitudes of noise and inefficiency effects.

Most of the frontier analyses are aimed at prediction of inefficiencies. The

technical efficiency is defined as ratio of observed output to the SFA output

TEi =
qi

exp(x′iβ)
= exp(−ui). (9)

The value of technical efficiency is between zero and one and it represents

the ratio of the company’s output to the output that could be produced by

fully efficient firm using the same vector of inputs. A drawback of SFA is

that even if there are no statistical errors, some may be wrongly regarded as

noise (Jamasb and Pollitt, 2003).

The estimation of the SFA parameters is more complicated due to two

random terms included in the right hand side of the equation (5); there-

fore, some assumption concerning these terms should be made. Assume vi

are random variables that are assumed to be independently and identically

distributed (i.i.d), vi ∼ N(0, σ2
v) and independent of ui; ui are non-negative

random variables assumed to be i.i.d, ui ∼ |N(0, σ2
u)| (Coelli, 1996b). Aigner

et al. (1977) obtained maximum likelihood estimators under these assump-

tions and parameterised the log-likelihood function for half-normal model.

Assume σ2 = σ2
v + σ2

u and λ2 = σ2
u

σ2
v

for σ2
v ≥ 0. There are no inefficiency

effects if λ2 = 0 and the deviations from frontier are due to statistical noise.

For details of this parameterisation, refer to Coelli et al. (2005).
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The ui is homoscedastic with constant mean and uncorrelated; the vi is

homoscedastic, with zero mean and uncorrelated (similar properties to the

noise of the classical linear regression model). The OLS model cannot be

used for estimation, because the intercept is biased downwards. Coelli et al.

(2005) suggest the use of maximum likelihood method for better asymptotic

properties in comparison with adjusted OLS models (e.g. COLS, MOLS).

The general model (5) from Aigner et al. (1977) can be extended to panel

data. The model is expressed as (Battese and Coelli, 1992)

ln qi,t = x′i,tβ + vi,t − ui,t, (10)

where time factor t is added. Statistical noise is assumed to be i.i.d,

vi ∼ N(0, σ2
v) and independent of inefficiency term. The inefficiency term

may vary over time

ui,t = ui exp[−η(t− T )], (11)

where ui are random non-negative variables assumed to be i.i.d. as trun-

cations at zero of N(µ, σ2
u) distribution; η parameter to be estimated; and

the panel dataset does not have to be balanced.

Using parameterisation of Battese and Corra (1977), we introduce γ :=

σ2
u/(σ

2
v +σ2

u) that represents the share of technical efficiency in error term. If

γ = 0, all deviations from the frontier are attributed to statistical noise; on

the other hand if γ = 1, all deviations are caused by inefficiency. For more

details, refer to Battese and Corra (1977), Battese and Coelli (1992), Coelli

(1996a), Coelli (1996b) and Coelli et al. (2005).

Since a cost function is considered in our study (dependent variable is
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total expenditures), the equation (10) is adjusted (Coelli, 1996b)

ln qi,t = x′i,tβ + vi,t + ui,t, (12)

all other factors keeping the same. In case the cost function in equation

(12) is considered, the ui,t term defines the cost inefficiency of the firm, i.e.

the distance of the firm from the cost frontier. Some authors recommend

translog form for cost function specification (e.g. Coelli et al., 2005; Agrell

and Bogetoft, 2011). We considered the option, but due to the limited dataset

and loss of degrees of freedom, we applied log-linear functional form. In case

of larger dataset, we would test both options and compare results.

2.2 Data description

Our benchmarking study is based on data of the electricity DSOs. We focus

on the unbundled regional DSOs with more than 100,000 customers. The

inclusion of smaller DSOs would increase the size of the dataset, but the

differences would have significant impact on the computed efficiency scores.

We complemented the Czech DSOs with companies from other European

countries.

The collection of data was complicated due to their confidentiality. There

were problems with provision of both financial (cost data) and technical data.

We contacted national regulatory authorities and communicated with the

Agency for Cooperation of Energy Regulators and the Council of European

Energy Regulators, but we were only referred to annual reports and to par-

ticular firms. Due to the confidentiality, we could not have been allegedly

provided with the data; therefore, we directly contacted particular compa-
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nies. The financial statements are publicly accessible in the Czech Republic,

but it is very uncommon in the international comparison. Sometimes con-

solidated data for particular energy groups are available, but they do not

include detailed data. During the data collection, we had to sign several con-

tracts and declarations on oath and we had to pledge to anonymise the data.

Thus we cannot mention companies’ names and we can only state descriptive

statistics of the dataset.

We obtained data of 15 DSOs from the Czech Republic, Slovakia, Poland,

Hungary and Serbia. The data are from financial statements, annual reports,

reports to the regulatory authorities, websites and mostly supplemented by

data provided directly by the companies. All companies are unbundled and

operating on the regional basis. We sought data from the Austrian DSOs and

contacted all 11 DSOs distributing energy to more than 100,000 customers,

but none of them provided us demanded data.

The only data we were able to obtain directly without help were the

data of Czech DSOs. There are three regional DSOs in the Czech Republic,

but we can use only two of them for our study, because the company E.On

Distribuce, a.s. did not provide us with financial data that would be usable

for our analysis. The published financial statements are consolidated for

distribution of both gas and electricity and it was no possible to obtain the

separated cost data; therefore, only ČEZ Distribuce, a.s. and PREdistribuce,

a.s. are included. We obtained the data from annual reports, distribution

quality reports and websites. The data and documents are available online

at websites of the companies.

Selection of inputs and outputs is based on theoretical literature (e.g.
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Jamasb and Pollitt, 2003; Haney and Pollitt, 2009; Kuosmanen et al., 2013;

Shuttleworth, 2005) and practical application (e.g. EY, 2013; Frontier Eco-

nomics, 2010; Frontier Economics, 2012; Schweinsberg et al., 2011).

The data are analysed using two methods, therefore, they are adjusted

accordingly. For DEA, cross-sectional data for 2012 are used. We sought

most up to date data and endeavour to obtain complete dataset of 2012.

Data of some firms we were able to obtain from 2010 to 2012 and the panel

is used for SFA. The balanced panel is not necessary for SFA and we utilise

this characteristic.

The inputs (costs) are represented in monetary values. They are adjusted

for inflation using annual growth rate and denominated in euro with 2012 as

a base year. The exchange rates were used as at the end of individual years,

because the costs were taken mostly from financial statements that consider

exchange rate at the year end.

The summary statistics over the data are depicted in Table 1. The data

are rounded to comply with the rules of DSOs and to guarantee anonymi-

sation. To anonymise the data, values for minimum, maximum and median

are rounded to the nearest ten. Most of the minimum values have to be

anonymised with designation “N/A”, because the minimum values would be

attributable to single company. We are aware of the low information value,

but we are limited by the signed contracts and declarations on oath.

The efficiency scores are estimated using software developed by Timothy

Coelli. For DEA, version 2.1 of software DEAP (Coelli, 1996a) and for SFA,

version 4.1 of software Frontier (Coelli, 1996b) are used.
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Table 1: Summary statistics over dataset
Variable Minimum Maximum Median Mean

TOTEX (’000 000 EUR) N/A 10 0 0.532

Distributed energy in TWh N/A 50 10 12.280

Number of customers (’000 000) N/A 10 0 1.552

Service area (’000 sq. km) N/A 80 20 26.048

Grid length (’000 km) 10 220 30 67.298

HV lines (’000 km) 10 150 20 42.668

MV lines (’000 km) N/A 70 10 22.030

LV lines (’000 km) N/A 10 0 2.609

Underground cables (’000 km) N/A 70 10 20.085

Overhead lines (’000 km) N/A 160 30 47.212

Number of transformers N/A 60 10 20.527

SAIFI 40 1 800 350 503.328

SAIDI N/A 20 0 5.661

2.2.1 Input variables

DEA can be used for estimation of multiple inputs and outputs while SFA

requires specification of the cost function (or production function) with single

dependent variable. The single input model utilises comparability of the

results of both methods.

We use input variable (dependent variable in case of SFA) in monetary

terms in form of total expenditures (TOTEX). We obtained capital expen-

ditures, however, the investments in distribution networks are cyclical and

given the scope of analysis (panel data for SFA), the use of CAPEX would

require long panel data or adjustments. Therefore, we prefer total costs to

be benchmarked.

The costs are converted from national currencies to euro. Jamasb and Pol-

litt (2003) converted their costs using purchasing power parities to equalise

the price differences among countries. We decided to transform the data
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using only the exchange rates, because the capital expenditures comprise

mostly of materials traded in euro and the direct labour costs form a minor

share of TOTEX of the utilities. We do not consider the transformation

using purchasing power parity to be convenient. In other studies, we did not

observe similar adjustments.

In some of the models, the total costs are weighted by distributed energy

and represents costs of unit of distributed energy.

2.2.2 Output variables

Our models are based on the output (dependent) variables we obtained. The

selection is based on the literature and practice of regulators. We consider

these variables as major cost drivers. Except for quality parameters (SAIFI

and SAIDI), the parameters are assumed to be non-discretionary or to limited

extent manageable by the incumbents. The output variables are

• distributed energy in MWh,

• number of clients (grid connection points),

• service area (sq. km),

• grid length (area),

• low voltage lines (km);

• medium voltage lines (km);

• high voltage lines (km);

• length of underground cables (km);
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• length of overhead lines (km),

• number of transformers,

• quality parameters - SAIDI, SAIFI.

These are the general variables used for estimation. The specifications of

models based on these data are described in the following sections.

2.3 Estimated models

2.3.1 Estimated DEA models

The input (dependent) variable of all models is represented by total ex-

penditures. The explanatory (output) variables differ. For DEA, we use

four output variables for analyses and consider methods with both CRS and

VRS. We use a mean normalisation of data to correct for imbalances in data

magnitudes. The normalisation is recommended by Sarkis (2007) to address

possible scaling effects of the software. The DEAP does not indicate any

problems, but we decided to normalise the data for the sake of accuracy.

The normalisation is defined

Āi =

N∑
n=1

Ani

N
, (13)

where Āi is the mean for i-th output or input; N is a number of DMUs;

and Ani is a value of particular input (output) of n-th DMU.

The outputs for first DEA model (DEA1) are:

• (1) area (sq. km),
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• (2) grid length (km) weighted by distributed energy (MWh),

• (3) transformers (count) weighted by distributed energy (MWh),

• and (4) inverse value of interruption duration (min) per MWh.

The interruption duration is computed from the SAIDI coefficient, which is

multiplied by number of customers and weighted by distributed energy. The

value is inverted, because the lower the interruption duration is, the more

costly the grid maintenance is assumed to be. The weighting of parameters

is used to address to multicollinearity of output variables. As mentioned

above, multicollinearity is not a problem for DEA, but high correlations

among variables may decrease the descriptive power. The weighting is also

preferred in the practical usage of DEA (e.g. benchmarking of DSOs in

Norway).

For the second DEA model (DEA2), the outputs are

• (1) area of the distribution network (sq. km)

• (2) grid length (km) weighted by distributed energy (MWh)

• (3) transformers (count) weighted by distributed energy (MWh),

• and (4) share of underground cables (%).

The interruption duration parameter is replaced by percentage share of un-

derground network that is generally considered to be more costly to maintain

and thus we decided to include it.
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2.3.2 Estimated stochastic frontier models

In regulatory practice, the parameters used for SFA are similar to DEA and

both methods are compared. We estimate three models. Two of them are

using similar variables as our DEA model.

We use unbalanced panel specification of the SFA cost model. We use

a log-linear model specification. This specification employs a Cobb-Douglas

cost functional form and it is linear in log of the variables. The log-linear

model specification for SFA1 is

lnTOTEXi,t = β0 + β1 lnAREAi,t + β2NETWi,t (14)

+ β3TRAN i,t + β4INTEi,t + ui,t + vi,t,

where dependent variable TOTEX are total expenditures expressed in euro

weighted by distributed energy; explanatory variables (AREA, NETW ,

TRAN and INTE) are similar to outputs in DEA1; u is inefficiency term;

v is noise term; βs are unknown parameters to be estimated; iε {1, .., 15} is

the coefficient for particular companies; and tε {1, 2, 3} is a time parameter

for 2010-2012 years. The variable for interruptions is not inverted, because

inversion is not necessary in case of SFA. The variables are not weighted by

MWh as in the case of DEA, because the values must be greater than one due

to the logarithmic form. For SFA, the data were scaled by 10 TWh instead

of GWh of delivered energy.

The SFA2 is specified similarly, only variable for interruption duration

is replaced by the share of cable lines (CABL).
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The third SFA model, SFA3, we defined as unweighted. We are aware

of the high correlation coefficient between distributed energy and number of

transformers (0.87); however, Jensen (2005) showed that multicollinearity has

little impact even on results of SFA and therefore we decided to include also

unscaled model. The selection of explanatory variables was based similarly

to previous models on regulatory practice. The model is defined

lnTOTEXu
i,t = β0 + β1 lnDIST + β2CABL (15)

+ β3TRAN
u
i,t + ui,t + vi,t,

where dependent variable TOTEXu represents unscaled total costs; ex-

planatory variables are DIST (represent distributed energy), CABL (al-

ready defined cables’ share), and TRANu (unscaled number of transformers)

other variables keeping similar to two previous models.

An important advantage of SFA is the possibility of statistical testing.

The significance of estimated parameters (βs) can be tested comparing the

computed t-statistics with critical values from ordinary statistical tables.

In addition to testing of the parameters of cost function, the existence of

inefficiency effects can be tested. SFA requires a priori assumption about

the distribution of inefficiency term. There two options, either to conduct

simple z-test or likelihood-ratio test (LR test). Coelli et al. (2005) suggest

using of one sided LR test, because the z-test has a poor performance for

small samples. The Frontier automatically gives values of one-sided likelihood

ratio test. The null hypopaper is inexistence of inefficiency effects, i.e. H0 :

λ = 0 for the half-normal model and H0 : µ = σ2
u = 0 for the truncated-
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normal model. The statistic value of the LR test of the half-normal model

is to be compared with χ2
1−2α(x) distribution where α is a level of statistical

significance and x refers to number of restrictions. The critical value for the

truncated-normal model can be obtained from Table 1 in Kodde and Palm

(1986).

The appropriateness of the truncated-normal model over the half-normal

model can be also tested using values computed by the Frontier. The LR

test statistic is

λ = −2 [lnL(H0)− lnL(H1)] , (16)

where lnL(H0) and lnL(H1) are statistics for log-likelihood values re-

ported for half-normal and truncated-normal models. The null is H0 : µ = 0

against alternative H1 : µ 6= 0. The value of the test statistic (16) is to

be compared with χ2
1−α(x) where α is a level of statistical significance and x

refers to number of iterations of half-normal model.

3 Results

This section presents the results of the models described in the previous

section. In the first section, the results of the DEA models are discussed.

Subsequently, the results of the SFA models are presented and the assump-

tions of the SFA models are tested. In third section, the summary statistics

of efficiency scores are presented. The section is concluded with evaluation

of the models and policy implications.
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3.1 DEA models

As described in the previous section, there are two specifications of the DEA

models to be tested. We apply input-based VRS specification of the models

while DEAP presents also efficiency scores for the CRS specification. The

DEAP in addition computes values for NIRS DEA to compute the nature of

the returns to scale. The technical efficiency scores are depicted in Table 2,

which contains values of both DEA models and encompasses the efficiency

scores for the CRS and VRS specifications, scale effects, and nature of the

returns to scale (abbreviation irs is for increasing returns to scale, drs for

decreasing returns to scale and dash for constant return to scale).

Given the CRS specification, we assume that the firms are operating

on the same scale. Since the dataset is comprised of companies of diverse

size and from different countries, we consider the VRS specification to be

more appropriate. If we use the CRS model, the technical efficiency scores

might be confounded by scale efficiencies. The scale efficiency is defined by

computing both CRS and VRS models, and then decomposing the efficiency

scores obtained by CRS DEA to scale and pure technical inefficiency. If

the efficiency scores obtained from the CRS and VRS models differ, then it

indicates the existence of scale inefficiency. The technical efficiency score of

the CRS specification is equal to multiple of the VRS efficiency score and

scale efficiency score.

In case of the CRS DEA models, there are three and two firms lying on the

frontier. The lowest efficiency score is equal to 0.201 and 0.239 respectively.

The values indicate significant differences among the firms. For the VRS

DEA models, the number of firms on the frontier increases in both cases
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Table 2: Summary of DEA efficiency scores
DEA1 DEA2

Firm CRS VRS Scale RtS CRS VRS Scale RtS

1 0.356 0.429 0.831 irs 0.422 0.446 0.947 irs

2 1.000 1.000 1.000 - 0.642 1.000 0.642 drs

3 0.241 0.319 0.757 irs 0.241 0.319 0.757 irs

4 0.378 0.413 0.915 irs 0.239 0.362 0.658 irs

5 0.281 0.454 0.619 irs 0.299 0.454 0.658 irs

6 0.747 0.906 0.825 irs 0.834 0.926 0.900 irs

7 1.000 1.000 1.000 - 1.000 1.000 1.000 -

8 1.000 1.000 1.000 - 1.000 1.000 1.000 -

9 0.721 1.000 0.721 drs 0.800 1.000 0.800 drs

10 0.207 0.430 0.483 irs 0.264 0.430 0.615 irs

11 0.386 1.000 0.386 drs 0.386 1.000 0.386 drs

12 0.300 0.366 0.820 irs 0.300 0.366 0.820 irs

13 0.201 0.415 0.484 irs 0.293 0.440 0.666 irs

14 0.315 0.386 0.815 irs 0.315 0.386 0.815 irs

15 0.622 0.910 0.684 irs 0.828 0.953 0.869 irs

mean 0.517 0.669 0.756 - 0.524 0.672 0.769 -

to five and the mean efficiency increases in both cases. Most of the firms

exhibit non-constant returns to scale, but there are still significant differences

among the benchmarked firms. The problem of VRS specification is that the

validity depends on the size of the sample and VRS DEA tends to overstate

the efficiency scores (Jamasb and Pollitt, 2003). The various categories of

the firms should be sufficiently represented in the sample that is, however,

limited in our case due to the small sample of firms.

Both DEA models give similar results. The validity can be increased by

the larger dataset, because different categories of the firms would be better

represented and thus the validity of VRS DEA would increase, but the data

gathering is very complicated as was described in the previous sections.
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3.2 SFA models

The SFA models are computed using programme Frontier. All the SFA

models are defined in Cobb-Douglas log-linear specification and modelled as

cost functions. The dataset in unbalanced for 15 firms with 28 observations.

Both truncated-normal and half normal distributions of the inefficiency term

are considered and tested. Summary statistics are reported in Table 3 for

the half-normal and Table 4 for the truncated-normal models. The values

of estimated coefficients are reported in columns while in parentheses the t-

statistics are depicted. The level of significance of the estimates is represented

by stars in parentheses. For LR test, the number of restrictions is depicted

in parentheses. The nature of the variables is described in previous section

in detail.

Table 3: Summary of SFA parameters with half-normal distribution of inef-
ficiency term

SFA1 (H-N) SFA2 (H-N) SFA3 (H-N)

Variable Coefficients (t-statistics)

Intercept 7.956 (3.544***) 10.954 (12.499***) -0.555 (-0.308)

AREA -0.076 (0.972) -0.109 (1.862*) -

NETW -0.224 (-0.763) -0.468 (-1.916*) -

TRAN 0.130 (0.509) 0.059 (0.279) -

INTE -0.194 (-0.929) - -

CABL - -0.715 (-6.188***) -0.378 (-3.478***)

DIST - - 1.132 (5.262***)

TRANU - - -0.386 (-2.222**)

σ2 0.334 (1.710*) 0.116 (1.937*) 0.159 (2.206**)

γ 0.948 (18.368***) 0.852 (7.445***) 0.907 (15.533***)

Statistics Values

Log-likelihood -0.824 5.869 5.427

LR one-sided test 7.222 (1 res.) 5.880 (1 res.) 11.971 (1 res.)

Statistical significance: * refers to 10%, ** refers to 5%, and *** refers to 1% significance.

The SFA1 specification shows poor statistical results. None of the vari-
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ables is significant at the 10% level. The value of γ indicates that 95% of the

variation in error term is attributable to technical efficiency and only 5% to

statistical noise. In the SFA2 model, two coefficients are weakly significant at

the 10% level of significance, one is significant at the 1% level and remaining

coefficient at variable TRAN is not statistically significant at the 10% level.

The second model exhibits lowest variance and only 15% of the variation in

error term is attributable to noise. In the third model, all coefficients are

significant at least at the 5% level. The model has lower variance than model

SFA1 and around 9% of the error term is attributable to statistical noise. To

test the existence of inefficiency effects with H0 : λ = 0, the values of LR test

are compared with χ2
0.9(1) = 2.706. Since the values reported for the models

exceed the critical value, we can reject the null hypopaper of no inefficiency

effects at the 5% level of significance.

The specification of truncated-normal distribution of inefficiency term

brings similar results. The SFA1 specification shows poor statistical results.

None of the variables is significant at the 10% level. The value of γ indicates

that 86% of the variation in error term is attributable to technical efficiency.

The SFA1 model has the lowest variance. The SFA2 model brings slightly

better results, one coefficient is weakly significant at the 10% level of signif-

icance, one is significant at the 5% level, one at the 1% level and remaining

coefficient at variable TRAN is not statistically significant at the 10% level.

Only 6% of the variation in error term is attributable to noise at the SFA2.

In the third model, all coefficients are significant at least at the 5% level.

The model has highest variance and only 3% of the variation in error term

is attributable to statistical noise.
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Table 4: Summary of SFA parameters with truncated-normal distribution of
inefficiency term

SFA1 (T-N) SFA2 (T-N) SFA3 (T-N)

Variable Estimated parameters (t-statistics)

Intercept 7.313 (4.216***) 11.200 (12.719***) -0.519 (-0.330)

AREA -0.091 (-1.156) -0.107 (-1.903*) -

NETW -0.093 (-0.348) -0.516 (2.111**) -

TRAN 0.772 (0.282) 0.079 (0.376) -

INTE -0.147 (-0.959) - -

CABL - -0.742 (-6.531***) 1.150 (6.092***)

DIST - - -0.384 (-3.845***)

TRANU - - -0.414 (-2.688**)

σ2 0.117 (1.945*) 0.317 (0.247) 0.503 (0.726)

γ 0.862 (7949***) 0.944 (4.224***) 0.970 (2.050**)

µ 0.629 (2.460**) -1.035 (-0.159) -1.397 (0.544)

Statistics Values

Log-likelihood 0.630 5.955 5.559

LR one-sided test 10.123 (2 res.) 6.050 (2 res.) 12.235 (2 res.)

Statistical significance: * refers to 10%, ** refers to 5%, and *** refers to 1% significance.

The negative signs of estimates and high coefficients at intercepts may

seem to be difficult to interpret. Initially, we were surprised with the signs,

but the results are in line with previous research (e.g. Jamasb and Pollitt,

2003). The negative signs can be interpreted by scale effects and increasing

returns to scale. The high values of γ indicates that most of the error term

is attributable to inefficiency. The low values would indicate wrong specifi-

cation of the model and on the contrary very high values approaching 100%

would need to be cautiously treated, because absence of noise is not likely to

occur especially in the cross-country comparison.

The existence of inefficiency effects is tested in different way compared

to the half-normal model. The null hypopaper is inexistence of inefficiency

effects in the model specification, i.e. H0 : µ = σ2
u = 0 (Coelli et al., 2005).
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The values of LR test are compared with critical values obtained from Table 1

in Kodde and Palm (1986). Taking the 5% level of significance, the critical

value is equal to 5.138. The reported values exceed the critical value thus we

can reject the null at the 5% level of significance.

In the last step, we test the appropriateness of the use of the truncated-

normal over the half-normal distribution of the inefficiency term. The test

statistic is defined in expression (16). The null hypopaper is that the half-

normal model is adequate, H0 : µ = 0, against alternative H1 : µ 6= 0. The

computed statistics of the test give

• λSFA1 = −2[7.222− 10.123] = 5.802,

• λSFA2 = −2[5.880− 6.050] = 0.34,

• λSFA23 = −2[11.971− 12.235] = 0.528,

and the critical value at the 5% level of significance is χ2
0.95(1) = 3.841;

therefore, we have to reject the null in case of first model and we cannot

reject the null for SFA2 and SFA3 at the 5% level of significance.

Due to the statistically insignificant parameters, we do not include the

model SFA1 in our comparison. None of the parameters was significant that

indicates inappropriate specification. The results from remaining models

are better and we include them in our analysis. The models SFA2 and

SFA3 are included in their half-normal specification, because we rejected the

adequacy of truncated-normal distribution of inefficiency term at the 5% level

of significance. The values are depicted in Table 5.
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Table 5: Summary of SFA cost efficiency estimates
SFA2 (H-N) SFA3 (H-N)

Firms Efficiency estimates Efficiency estimates

1 0.476 0.400

2 0.596 0.583

3 0.752 0.586

4 0.724 0.800

5 0.731 0.800

6 0.916 0.863

7 0.907 0.881

8 0.922 0.889

9 0.747 0.642

10 0.835 0.716

11 0.846 0.816

12 0.843 0.786

13 0.749 0.728

14 0.879 0.900

15 0.899 0.946

mean 0.764 0.720

3.3 Summary of results

In this section, results from preferred models are described and summarised.

The results are depicted in Table 6. We include the CRS and VRS efficiency

scores obtained by both the DEA models and efficiency scores of the SFA2

and SFA3 models. The SFA models are specified with half-normal distribu-

tion of inefficiency term.

The results significantly differ across the firms. As we can see, the mean

efficiency is in interval from 52% (CRS DEA1) to 76% (SFA2). The diversity

in results is not exceptional in comparison with other studies and practice.

For example, the efficiency scores computed by the German regulator expe-

rienced similar variation. It ranged between 45% and 77% with lower values

for DEA and higher for SFA (Frontier Economics, 2012). The variation of
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results is caused by differences in nature of the methods.

In the regulatory benchmarking practice, the results from different meth-

ods are considered. The results are usually weighted and final efficiency

scores are based on scaling. The weighted sum of efficiency scores helps to

deal with particularities of different models. In the current 2014-2018 regu-

latory period in Austria, the results from two DEAs and MOLS are scaled

and used.

The Austrian energy regulatory office employs CRS DEA. The CRS speci-

fication is chosen under an assumption that possible scale inefficiencies would

be solved by mergers or joint ventures within the market (Frontier Economics,

2012). German regulator applies CRS DEA and SFA and takes into the ac-

count results from both methods; however, benchmarking in Austria and

Germany is based on the data of national DSOs and since our study is based

on international dataset, we believe that the VRS specification is also valid.

Considering the practice of regulators, we include both specifications in our

final comparison.

As the data of the Czech companies in the sample are publicly accessible,

we can reveal results for Czech DSOs included in the dataset. The company

1 is ČEZ Distribuce, a.s. and company 2 PREdistribuce, a.s. Names of other

companies we are not allowed to disclose due to the contractual obligations.

The efficiency scores of ČEZ Distribuce, a.s. are among the lowest in the

sample. The efficiency scores for PREdistribuce, a.s. are better and in

half of the results the company is lying on the frontier. The better results

could lead us to assign them to the different structure of the service area

of both operators; however, DSOs similar to both ČEZ Distribuce, a.s. and
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Table 6: Summary of computed efficiency scores
CRS DEA1 VRS DEA1 CRS DEA2 VRS DEA2 SFA2 (H-N) SFA3 (H-N)

Firms Efficiency scores

1 0.356 0.429 0.422 0.446 0.476 0.400

2 1.000 1.000 0.642 1.000 0.596 0.583

3 0.241 0.319 0.241 0.319 0.752 0.586

4 0.378 0.413 0.239 0.362 0.724 0.800

5 0.281 0.454 0.299 0.454 0.731 0.800

6 0.747 0.906 0.834 0.926 0.916 0.863

7 1.000 1.000 1.000 1.000 0.907 0.881

8 1.000 1.000 1.000 1.000 0.922 0.889

9 0.721 1.000 0.800 1.000 0.747 0.642

10 0.207 0.430 0.264 0.430 0.835 0.716

11 0.386 1.000 0.386 1.000 0.846 0.816

12 0.300 0.366 0.300 0.366 0.843 0.786

13 0.201 0.415 0.293 0.440 0.749 0.728

14 0.315 0.386 0.315 0.386 0.879 0.900

15 0.622 0.910 0.828 0.953 0.899 0.946

mean 0.517 0.669 0.524 0.672 0.764 0.720

PREdistribuce, a.s. are included in the sample. The efficiency scores of city

operators are on average similar to efficiency scores of DSOs operating larger

regions with lower population densities; therefore, the better performance of

PREdistribuce, a.s. cannot be simply attributable to the smaller area the

company is distributing the electrical energy on.

The SFA models indicate that the Czech DSOs are operating inefficiently,

or more precisely below an average efficiency. There can be other factors that

were omitted from our study, but the selection of variables is based both on

practical literature and regulatory practices for DSOs. We did not include

more variables to avoid an overspecification of our models. Although the

variation in results might seem very high, it is in line with previous research

(e.g. Jamasb and Pollitt, 2003; EY, 2013).
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3.4 Policy implications

The energy sector in the Czech Republic can be considered as infant. There

are still discussions about the setting of the regulatory parameters. The

obstacles were shown during the discussion process preceding the fourth reg-

ulatory period of the regulation of gas sector in the Czech Republic. There

were problems with definitions of amortisation and depreciation, investments,

etc. There can be problems inherited from the past that can be beyond con-

trol of the managements. The current regulatory setting does not generate

sufficient incentives for development. In the current regulatory formula, the

quality and development parameters are not sufficiently emphasised. Addi-

tional parameters promoting development of the grid should be encompassed

in the regulation and also considered in the setting of benchmarking meth-

ods. DSOs should be more incentivised to invest in new technologies. The

development of smart grids, smart metering and more effective methods of

management of renewable energy sources in the Czech Republic should be

more accented in the future.

We are convinced that the use of international comparison would enable

thorough comparison and introduction of individual efficiency factors. Tak-

ing into account constraints stemming from the structure of the market, we

believe that the performance of incumbents should be assessed by interna-

tional benchmarking when the monopolistic domestic market structure with

only three companies operating the market restricts representativeness of the

majority of methods. Our model specification is very narrow with only hand-

ful of parameters, but this specification is in accordance with both theory

and foreign regulatory practice. Benchmarking is used for evaluation of rela-
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tive performance in comparison with peers and we consider it as an auxiliary

tool for regulation. We are aware of possible shortcomings of the methods

that are also endorsed by the use of international dataset.

Setting the efficient companies lying on the frontier (DEA), or the most

efficient companies (in case of SFA), as a yardstick would be too restrictive.

We would propose to set the objective efficiency value as a mean (or median)

efficiency score. Similar methodology is applied by the Norwegian regulator

(Frontier Economics, 2012). The companies operating above the mean (or

median respectively) are considered as effective and allocated only general

X factor. The companies operating below would be incentivised by the indi-

vidual X factors to improve efficiency of their performance. Another method

would be to set the floor similarly as the German regulator. If the company

is below some artificial value (in Germany 0.6), it would be treated as having

this minimum value.

We realise that international benchmarking is problematic. Similarly, the

size of our dataset confines the representativeness of our results. The use of

benchmarking would be the tool which suitability was proven in regulatory

practice if the Czech regulator seeks to set individual X factors in the future;

moreover, the Czech regulator is able to acquire the data of the EU regulated

companies and conduct comprehensive analysis with larger dataset. We were

informed by the representatives of ERU that the data are exchanged by the

EU regulators within the Agency for Cooperation of Energy Regulators on

regular basis.

The company ČEZ Distribuce, a.s. showed efficiency below an average in

all models we conducted and the results indicates inefficient operation. The
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company’s score was only in one case above median value. The company

PREdistribuce, a.s. obtained better scores and in three DEA models it was

a frontier firm, but in both SFA models it obtained efficiency scores below

mean and median. The Czech DSOs scored worse than comparable firms

from abroad that indicates improvement potential. There are only three

companies dominating the Czech market and the regulator can hardly dis-

pose of complete information about the firms. There is a risk of regulatory

capture. We mentioned all the regulatory constraints defined by Laffont and

Tirole (1996) and the political risk can also be an issue. The regulator is

established as independent, but two out of three incumbents are still con-

trolled by the state. The inefficient operation is indicated in international

comparison by fees for distribution included in the price of electricity. The

Slovak regulator conducted analysis of fees for electricity distribution in the

selected EU countries (URSO, 2011). The examined countries were Slovakia,

the Czech Republic, Poland, Hungary, Germany and Austria. The fee was

in the Czech Republic on average (average fee for all voltage lines) higher

than in Slovakia, Poland and Hungary and comparable with Austria. In Ger-

many, the average fee was highest due to the by far largest fee imposed on

the households to bear significant amount of cost that skewed the average

value.

In the third regulatory period, ERU was not able to set the individual X

factors for regulatory formula based on the revenue cap incentive scheme. We

are convinced that international benchmarking is a tool that would enable the

establishment of the individual X factors. The introduction of the individual

X factors without international comparison would demand thorough analysis
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of the incumbents and would be complicated due to the above mentioned

constraints the regulator has to always face. We showed in our analysis

that the efficiency between the Czech DSOs markedly differ and that their

operation is less efficient in comparison to foreign firms. The inclusion of only

general efficiency factor in the regulatory formula is therefore not sufficient to

improve their operation. We are aware of the fact that a more comprehensive

dataset is necessary for precise setting of the individual X factors and we

are aware of problems stemming from the limited size of the dataset we

used. The larger dataset would increase the descriptive power of our results,

however, the minimum criteria for DEA were fulfilled. Similarly, the more

comprehensive dataset would improve the results of SFA. We recommend

ERU to conduct similar benchmarking analysis with a larger dataset. The

results should be used for the adjustment of general X factor and primarily

to introduce the individual X factors that ERU was not able to incorporate

in regulatory formula of the current third regulatory period.

4 Conclusion

In our paper, we focused on the regulation of electricity sector in the Czech

Republic with main emphasis put on the implementation of benchmarking

methods for the distribution system operators. We utilised the benchmark-

ing studies focusing on electricity distribution companies and examine the

applicability of the benchmarking methods to DSOs in the Czech Republic.

We sought the data of foreign companies to complement the dataset. The

natural monopolistic market structure, the DSOs are inclining to, facilitates

the application of international benchmarking as the companies are usually
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controlling certain regions. Due to the liberalisation that was institution-

alised at the EU level, the companies also share similar structure as they

have to be unbundled from other activities.

Our main research question was to evaluate the use of benchmarking

methods for the regulation of DSOs. Benchmarking of the incumbents would

facilitate introduction of the individual X factors corresponding to efficiency

of particular incumbents. Similar analysis has not been conducted yet, as far

as we know.

We collected a dataset comprising of 15 unbundled companies from the

Czech Republic, Slovakia, Poland, Hungary and Serbia. The data gathering

was complicated due to confidentiality. We are not allowed to disclose the

data and the names of the foreign companies, however, it does not affect

representativeness of our paper as we sought to find the efficiency scores

for the Czech DSOs. The dataset comprises companies that are similar to

the Czech DSOs in terms of area and population served. The data of the

Czech companies are public and therefore we can present our results. We

were only able to use the data for ČEZ Distribuce, a.s. and PREdistribuce,

a.s. The financial statements for E.On Distribuce, a.s. are consolidated for

distribution of electricity and gas and the company refused to provide us

with unconsolidated cost data.

For the empirical analysis, we applied both non-parametric and para-

metric efficiency measurement methods. The data envelopment analysis was

applied to cross-sectional data of the firms for 2012 in constant and variable

returns to scale specifications. The stochastic frontier analyses were based

on the unbalanced panel for 2010-2012 years. The data were adjusted for
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inflation using annual growth rate and denominated in euro with 2012 as a

base year. The total expenditures were taken as input (dependent variable)

and the outputs (dependent variables) were based on grid parameters and

outputs. The selection of parameters was based on theory and practical ex-

perience of regulators applying benchmarking of DSOs. The weighting of

outputs was applied to address high correlation among the output variables.

The results of our analysis showed significant differences among efficiency

scores of both Czech companies. The efficiency scores of ČEZ Distribuce,

a.s. were below mean efficiency in all six models conducted while only in one

case the efficiency score was above median. The company PREdistribuce,

a.s. obtained higher scores. In case of three out of four DEA models, it

was a frontier firm; however, in SFA models the efficiency was below mean

and median. Our models confirmed varied efficiency of Czech DSOs that

should be addressed in the forthcoming fourth regulatory period. We believe

that individual efficiency factors should be implemented to control for these

differences.

Benchmarking serves as a suitable tool for assessment of the cost efficiency

of the Czech operators in international comparison. The results showed that

the Czech DSOs are in the international comparison among the less efficient

companies. This fact is in line with a study of the Slovak regulatory office,

which compared fees for the distribution included in the electricity price was

final customers. URSO (2011b) showed that the fee was in the Czech republic

on average higher than in Hungary, Slovakia and Poland and comparable with

Austria.

We are aware of the limitations stemming from the size of the dataset.
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A larger dataset would improve the robustness of the frontier methods. As

the regulator can acquire more data within the Agency for Cooperation of

Energy Regulators, we recommend the Czech regulator, based on our anal-

ysis, to include the benchmarking methods in the setting of parameters for

the forthcoming fourth regulatory period. Our results indicated that the

efficiency scores differ for the Czech DSOs and their efficiency is worse in

comparison with their foreign peers. Benchmarking would enable setting

of individual X factors and modifications of the general X factor to better

correspond to the current market situation. We showed that the shortage

of national data, which restrained the adoption of benchmarking, can be

overcome by the use of international firms.
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